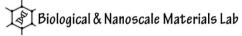


Distributed: Oct. 13, 2021

Due: Oct. 18, 2021 (Fri)



Bio-integrated Materials Science (Online Lectures)

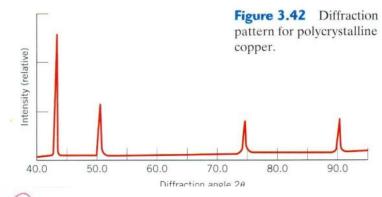
X-Ray Diffraction

Lecture 4_Homework

Prof. Jung Heon Lee

Crystal Systems: Due Oct. 18, 2021 (Mon)

Using the data for molybdenum in Table 3.1, compute the interplanar spacing for the (111) set of planes.


Using the data for aluminum in Table 3.1, compute the interplanar spacings for the (110) and (221) sets of planes.

Determine the expected diffraction angle for the first-order reflection from the (113) set of planes for FCC platinum when monochromatic radiation of wavelength 0.1542 nm is used.

Table 3.1

Metal	Crystal Structure ^a	Atomic Radius ^b (nm)	Metal	Crystal Structure	Atomic Radius (nm)
Aluminum	FCC	0.1431	Molybdenum	BCC	0.1363
Cadmium	HCP	0.1490	Nickel	FCC	0.1246
Chromium	BCC	0.1249	Platinum	FCC	0.1387
Cobalt	HCP	0.1253	Silver	FCC	0.1445
Copper	FCC	0.1278	Tantalum	BCC	0.1430
Gold	FCC	0.1442	Titanium (α)	HCP	0.1445
Iron (α)	BCC	0.1241	Tungsten	BCC	0.1371
Lead	FCC	0.1750	Zinc	HCP	0.1332

 a FCC = face-centered cubic; HCP = hexagonal close-packed; BCC = body-centered cubic. b A nanometer (nm) equals 10^{-9} m; to convert from nanometers to angstrom units (Å), multiply the nanometer value by 10.

x-ray diffraction pattern for copper, which has an FCC crystal structure; monochromatic x-radiation having a wavelength of 0.1542 nm was used.

- (a) Index (i.e., give h, k, and l indices for) each of these peaks.
- **(b)** Determine the interplanar spacing for each of the peaks.
- (c) For each peak, determine the atomic radius for Cu, and compare these with the value presented in Table 3.1.