

Distributed: Oct. 11, 2021

Due: Oct. 15, 2021 (Fri)

Bio-integrated Materials Science (Online Lectures)

Crystal systems, Point coordinates, Crystallographic directions

Lecture 3 Homework

Prof. Jung Heon Lee

Crystal Systems: Due Oct. 15, 2021 (Fri)

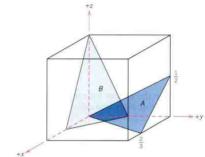
- 3.2 If the atomic radius of aluminum is 0.143 nm, calculate the volume of its unit cell in cubic meters.
- Show for the body-centered cubic crystal structure that the unit cell edge length a and the atomic radius R are related through $a = 4R/\sqrt{3}$.
- Iron has a BCC crystal structure, an atomic radius of 0.124 nm, and an atomic weight of 55.85 g/mol. Compute and compare its theoretical density with the experimental value found inside the front cover of this book.
- Iron has a BCC crystal structure, an atomic radius of 0.124 nm, and an atomic weight of 55.85 g/mol. Compute and compare its theoretical density with the experimental value found inside the front cover of this book.
- 3.24 On the basis of ionic charge and ionic radii given in Table 3.4, predict crystal structures for the following materials:
 - (a) CsI

(c) KI

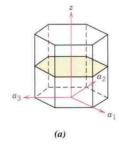
(b) NiO

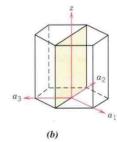
(d) NiS

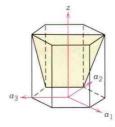
able 3.4	Cation	Ionic Radius (nm)	Anion	Ionic Radius (nm)
onic Radii for Several	Al^{3+}	0.053	Br ⁻	0.196
for a Coordination Number of 6	Ba ²⁺	0.136	CI-	0.181
	Ca ²⁺	0.100	F-	0.133
	Cs+	0.170	I-	0.220
	Fe ²⁺	0.077	O ²⁻	0.140
	Fe ³⁺	0.069	S ²⁻	0.184
	K^{+}	0.138		
	Mg ²⁺	0.072		
	Mn ²⁺	0.067		
	Na ⁺	0.102		
	Ni ²⁺	0.069		
	Si ⁴⁺	0.040		
	Ti ⁴⁺	0.061		

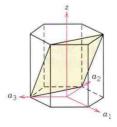

- 8.53 Within a cubic unit cell, sketch the following directions:
 - (c) [012]

(g) [123]


(d) [133]


(h) [103]


Determine the Miller indices for the planes shown in the following unit cell:



Determine the indices for the planes shown in the following hexagonal unit cells:

