

Bio-integrated Materials Science (Online Lectures)

Bio-integrated Metallic Nanomaterials

Lecture 7

Prof. Jung Heon Lee

Metals in Periodic Table

*Lanthanide series

**Actinide series

corios	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
301103	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
eries	03	90	91	92	32	94	90	90	97	90	99	_100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Gold in nanoscale

Nano size

Au₃₀NP-PEG in DI water

Au₅₀NP-PEG in DI water

Gold nanoparticles

Langmuir, 2015, 31, 13773

Atomic number 79 •

- Electron rich •
- Chemically inert
- Stable (noncorrosive) ٠
- Great biological compatibility ٠
- Low toxicity
- \$\$

Synthesis of gold nanoparticles

Extinction

Extinction = <u>absorbance</u> + <u>scattering</u> Absorb light Reflect light

Transmitted light

Reflected light

$$C_{abs} = 4\pi k a^{3} \text{Im} \left[\frac{\varepsilon - \varepsilon_{m}}{\varepsilon + 2\varepsilon_{m}} \right]$$
$$C_{sca} = \frac{8\pi}{3} k^{4} a^{6} \left| \frac{\varepsilon - \varepsilon_{m}}{\varepsilon + 2\varepsilon_{m}} \right|^{2}$$

- Absorbance is dominant when a is small
- Scattering is dominant when *a* is large

Color of identical gold nanoparticles with transmitted and reflected light

Why is gold nanoparticle red?

Langmuir, 2015, 31, 13773

Gold nanoparticles are not always red!

200nm (same for all the images)

Chem. Rev. 2005, 105, 1547

Lycurgus cup

Why does it look different?

Photograph: British Museum Images

Gold materials of different shapes

→ Each NP has different properties

Nanoscale, **2014**, *6*, 2502–2530

Growth mechanism of gold nanorods

STEP 1: SYMMETRY BREAKING IN FCC METALS

Surface plasmons of nanoparticles

Size and shape of the nanoparticle affect their resonance frequency

Anal. Chim. Acta, 2012, 716, 76

Shape variation of gold nanoparticles

Aggregation of gold nanoparticles

- Dispersed gold nanoparticles will have a red color in solution.
- If the particles aggregate, the solution will appear blue/purple and can progress to a clear solution with black precipitates.
- Why? Plasmonic coupling!

Metallic nanoparticles

Surface plasmon resonance

- Free electrons oscillate collectively at the interface of metal and surrounding medium in resonance with external EM fields
- Dyes, SERS, fluorescence amplification, colorimetric sensing
- Can be applied in various biomedical imaging

Self assembled monolayers (SAM)

SAM (self-assembled monolayers): adsorption of molecules from solution onto solid substrates to form ordered molecular monolayers (e.g. alkylthiols on gold)

Gold-thiol chemistry

SAM conjugation

Chemical conjugation of AuNPs

Use SAM (Self assembled monolayer) on the surface of AuNP surface

Chemical conjugation between AuNP and ssDNA

Single stranded (ss) DNA can be chemically attached on AuNP based on SAM

J. Am. Chem. Soc., **2008**, 130, 14217 Adv. Mater. **2008**, 20, 3263

DNA conjugation on AuNPs

• The behavior of AuNPs can be controlled by the functionalized DNA

Nature. 1996, 382, 607

AuNP-DNA system for metal ion sensing

J. Am. Chem. Soc., **2008**, 130, 14217 Adv. Mater. **2008**, 20, 3263

Physical interaction between AuNP and ssDNA

ssDNA can bind to AuNPs, but double stranded DNA cannot ssDNA can improve the stability of AuNPs

J. Am. Chem. Soc., **2008**, *130*, 14217 *Adv. Mater.* **2008**, *20*, 3263

- Adenine (A), guanine (G), cytosine (C), and thymine (T) are found in DNA.
- Adenine, guanine, cytosine, and uracil (U) are found in RNA
- Bases have ring structure \rightarrow hydrophobic

Colorimetric sensors for detection of metal ions

Achromatic (black) nanosensors based on CRYK model

Achromatic (black) nanosensor for multiplexed detection

Enhancement of color transition with naked eyes

Concetration of target DNA3 (nM)

Achromatic sensors for biomarker detection

J. H. Heo et al., Nanoscale, 2016, 8, 1834

Photothermal phenomenon

Photothermal driven release

Wavelength (nm)

ACS Nano, **2009**, 3 ,80–86 Nature Mater. **2009**, 8, 935 - 939

Gold nanostars

□Small size (~30-40 nm)

HEPES gold nanostars

 2-[4-(2-hydroxyethyl)-1piperazinyl]ethanesulfonic acid (HEPES) is used as both reducing and shapedirecting agents.

- Branched gold nanocrystals were formed by selective tip growth in the <111> directions, suggesting relatively weak or no adsorption of HEPES on the {111} planes compared with the {100} planes
- Among three functional groups in the HEPES molecule (hydroxyl, sulfonate, and piperazine), piperazine is responsible for generating branched structure

DIC Wang et al., Chem. Mater. 2007, 19, 2823-2830

Biologically transparent window

 Wavelengths of light from 650 nm to 900 nm are minimally absorbed and preferentially scattered upon interaction with tissue allowing for deeper light penetration than possible at other optical wavelengths
 Dovepress, 2015, 7, 193-209

Targeted drug delivery

Type and property of various targeting molecules for NPs. Modified from ref. [242].

Туре	MW (kDa)	Diameter (nm)	Features
Monoclonal antibodi Whole antibodies	ies 150	15–20	High affinity, divalent, many clinically approved examples, contains biologically active constant (Fc) region, long circulation
Engineered fragment	ts (monovalent)		
ScFv	25	3–5	Lowered affinity, rapid clearance from circulation, renal retention, reduced stability, reduced immunogenicity
Fab'	50	5-10	Can be produced genetically or enzymatically by cleavage of monoclonal antibodies
Nanobody	15	2-3	Smallest antigen-binding fragment, single domain, can bind cryptic epitopes
Engineered fragment	ts (divalent)		
F(ab') ₂	100	10-15	Improved affinity, can be engineered to a variety of sizes and arrangements of protein domains
Diabodies	50-80	5-10	Mono-specific or bi-specific dimer of ScFv
Minibodies	80	10	Can be produced genetically
Antamers			
RNA/DNA	10–30	2-3	Rapid clearance, automated chemical synthesis, susceptible to nucleases without chemical modification
Receptor-ligands			
Whole proteins	30-150	Variable	Produced using recombinant DNA technologies, can be biologically active, susceptible to proteases
Peptides	0.5-10	Variable	Facile synthesis and modification, diverse libraries and screening technologies, susceptible to peptidases, renal retention
Small molecules	0.1-1.0	0.5-2.0	Chemical synthesis, simple modification and coupling chemistries, can be biologically active, highly variable affinities

argeted to the specific part to treat in the body

Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company

Gold nanostar based DDS-release of drug

ACS Nano, 2012, 6, 3318

Cell image

Ribosomes are proteinsynthesizing machines Peroxisome oxidizes Nucleus contains the fatty acids genes (chromatin) Cytoskeleton supports cell, aids in movement of organells Nuclear envelope Lysosome degrades segregates chromatin intracellular debris (DNA + protein) Transport vesicle shuttles lipids from cytoplasm and proteins between ER, Golgi, and plasma membrane Nucleolus is site of ribosomal RNA Golgi complex processes, synthesis packages, and targets proteins to other organelles Plasma membrane or for export separates cell from Smooth endoplasmic environment, regulates reticulum (SER) is site movement of materials of lipid synthesis and into and out of cell drug metabolism Mitochondrion oxidizes **Rough endoplasmic** fuels to produce ATP reticulum (RER) is site of much protein

synthesis

Figure 1-7a Lehninger Principles of Biochemistry, Fifth Edition © 2008 W. H. Freeman and Company

Gold nanostar based cancer treatment

Cell viability assay

ACS Nano, 2012, 6, 3318

Self assembly of surfactants

Synthesis of mesoporous materials using surfactants

J. Control. Release 2017, 262 (28), 329

Synthesis of AuNR/mSiO₂ core/shell structure

Fig. 1. TEM images of (a) AuNRs and (b) AuNR@mSiO₂ nanoparticles.

- Homogeneous nucleation: nuclei that are spontaneously generated and grow irreversibly to form a new phase.
- Heterogeneous nucleation: nuclei are formed on alien surfaces or particles, or pre-existing nuclei in the old phase.

https://www.frontiersin.org/10.3389/conf.FBIOE.2016.01 .01053/event_abstract

AuNR/mSiO₂ core/shell structure

Cryst. Growth Des. 2018, 18 (8), 4731

Highly monodisperse AuNR/mSiO₂

Cryst. Growth Des. 2018, 18 (8), 4731

Antibacterial property of AgNP

AMB Express, 2013, 3-32

ACS Nano, 2018, 12, 5615-5625

Text. Res. J., 2017, 1377–1386

2500

2000

t/h

0.14 g L⁻¹

3000

Gold/silver nanorod for anti-bacterial applications

a

Control

AuNR

Au/AgNR@mSiO₂

120 L-929 cell viability (%) 100 80 60 40 20 12.5 25 Control

1 day 2 days 3 davs 50 125 250 37.5 Au/AgNR@mSiO₂ concentration (µg/mL)

BioChip J., 2019, 13 (4), 362

Dark field imaging of cancer cells

Chem. Phys. Lett. 2010, 487, 153

13 nm AuNP x 20 times concentrated

50 nm AuNP

100 nm AuNP

Langmuir, 2015, 31, 13773

Dark field imaging of NPs

Imaging single molecule movement

Multicolor tracking of single biomolecules using plasmonic NPs

ACS Photonics 2019, 6, 2870-2883

Dimension of genomic DNA molecules

Iowa Public Television, 2004

 1
 2
 3
 4
 5

 1
 2
 3
 4
 5

 6
 7
 8
 9
 10
 11
 12

 6
 7
 8
 9
 10
 11
 12

 13
 14
 15
 16
 17
 18

 19
 20
 21
 22
 x y

Science, 1996, 273, 494-497

Chromosome no.1 2.5×10^8 bp= 85 mm (0.34 nm/1 bp)

> NG KYUN KWAN IVERSITY (SKKU)

Nature. 2006, 441, 7091, 315–321

Nat. Methods, 2011, 8, 221-229

Transmission Electron Microscopy (TEM) based DNA visualization

Double helical B-form DNA structure

Ultramicroscopy, 1981, 7, 189

Sequence specific mapping

Nucl. Acids Res., **1994**, 22, 5218

DNA-protein complex (chromatin)

Science, 1975, 187, 1202

DNA nanostructures

Nature, 2008, 452, 198

Fluorescence imaging for genomic DNA studies

High-throughput sequencing

PNAS, 2007, 104, 2673-2678

DNA damages

Analyst, 2016, 141, 4326-4331

DNA-protein interactions

Mol. Cell., 2014, 54, 832-843

Scanning Electron Microscopy (SEM) imaging

http://www.ammrf.org.au/

The James Hutton Institute

Avian flu virus

UAF Center for Distance Education

www.tescan.com

Limitation of current DNA metallization strategies

Langmuir, 2013, 29, 11176-11184

Langmuir, 2010, 26(3), 2068–2075

J. Mater. Chem., 2011, 21, 12126-12131

DNA binding peptide (DBP) based DNA imaging

KWKWKKA-FP-AKKWKWK FP: eGFP, mCherry

Design of DBP based fluorescence imaging

Imaging DNA of live *E.coli* cells

FP(eGFP)-DBP

SUNG KYUN KWAN UNIVERSITY (SKKU)

Nucleic Acids Res., 2016, 44, 1

DNA metallization strategy

DNA with high density thiol groups

- Interaction with dsDNA and DNA binding peptide with thiol tag (DBP-SH) for the introduction of functional groups
- Covalent bonding of thiol group onto the gold surface and nanoparticle

Small, 2017, 13, 1601926

AuNP assembly on DBP-SH treated λ -DNA

Au nanowires grown on λ -DNA templates

Imaging 3D entangled DNA structures

SUNG KYUN KWAN UNIVERSITY (SKKU)

Comparison of fluorescence & SEM images of DNA

DNA nanostructures for NP patterning

Patterning NPs on DNA nanostructures

H. Yan et al., Angew Chem., 2006, 45, 730

DNA nanostructures for NP patterning

Patterning NPs on DNA nanostructures

NP patterning on DNA origami

Angew Chem., 2015, 54, 2966

Self assembly of NPs using DNA origami

Nano Lett. 2015, 15, 1368

Lattice structures formed using DNA origami

Lattice structures formed using DNA origami

Science, 2016, 351 (6273), 582

DNA base directed AuNP morphologies changes

Angew. Chem. Int. Ed. 2012, 51, 9078

Synthesis of chiral AuNPs using AA/peptides

Chembites.org Nature, **2018**, *556*, 360